If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x-1176=0
a = 2; b = 1; c = -1176;
Δ = b2-4ac
Δ = 12-4·2·(-1176)
Δ = 9409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9409}=97$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-97}{2*2}=\frac{-98}{4} =-24+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+97}{2*2}=\frac{96}{4} =24 $
| 90=4(x-3) | | 90=4(-x-3) | | -12(5-2x)=3x+1 | | 5(10x-2)=0 | | 6t–1=3t+7 | | 5(2x+9)=-15+40 | | 28a^2-21a=0 | | 15=4x=1 | | y=6(-3)+8 | | 2(12x+18)+6=18x+6(x+7) | | -4w=16.16 | | 15(n+7)-81=3(5n+8) | | -13=4(-3-6c)+24c | | 51/3+x=21/2 | | -6d+10+6d=10 | | 25x+13+12x=-130 | | -7+20u=2(10u-5)+3 | | h-7=-13.9 | | 25x+58+12x=-130 | | 5t+18=2t+33 | | 5(7-2v)+0v+10v=6 | | 6-3f=7+9(4-2f) | | (356.25)=(9,500)(.025)t | | 5y+1=3y+ | | 3(x+2)=x+2(x+1) | | ((7+7+4x)-(4+4+2x))x=3.6 | | -4x-72-9x=84 | | 7+1/2(12-4s)+2s=4 | | 2x+x-20=22 | | G(x)=-8+3x | | 3x+x^2=3.6 | | 7^2(4)=9x |